JEE MAINS 2019 Question
Let x, y be positive real numbers and m, n positive integers. The maximum value of the expression \frac{x^m y^n}{(1+x^{2m})(1+y^{2n})} is:
(A) \frac{1}{2}
(B) \frac{1}{4}
(C) \frac{m+n}{6mn}
(D) 1
Answer: B
Solution:
Using A.M \ge G.M inequality, we get
\frac{1+x^{2m}+y^{2n}+x^{2m}.y^{2n}}{4} \ge (x^{2m}.y^{2n}.x^{2m}.y^{2n})^{\frac {1}{4}}
\therefore \frac{(1+x^{2m})(1+y^{2n})}{4} \ge x^{m}.y^{n}
\Longrightarrow \frac{x^{m}.y^{n}}{(1+x^{2m})(1+y^{2n})} \le \frac{1}{4}
Therefore, maximum value is \frac{1}{4} .
Thanks for reading the post and visiting the website.
Some More Questions to Read:
• IIT JEE Advanced 2025, Paper-1, Marks (+4, 0); Limits Question on Leibniz Rule
• IIT JEE Advanced 2025 Paper-2 Limits Question based on L’Hospital’s Rule
Some Important Concept to Read:
• L’ Hospital Rule complete Content