Let x, y be positive real numbers and m, n  positive integers..

JEE MAINS 2019 Question

Let x, y be positive real numbers and m, n  positive integers. The maximum value of the expression \frac{x^m y^n}{(1+x^{2m})(1+y^{2n})} is:

(A)   \frac{1}{2}                                  

(B)  \frac{1}{4}  

(C)  \frac{m+n}{6mn}                            

(D)   1

 

Answer: B

Solution:

Using A.M \ge G.M inequality, we get

\frac{1+x^{2m}+y^{2n}+x^{2m}.y^{2n}}{4} \ge (x^{2m}.y^{2n}.x^{2m}.y^{2n})^{\frac {1}{4}}  

\therefore \frac{(1+x^{2m})(1+y^{2n})}{4} \ge x^{m}.y^{n}

\Longrightarrow \frac{x^{m}.y^{n}}{(1+x^{2m})(1+y^{2n})} \le \frac{1}{4}

Therefore, maximum value is \frac{1}{4} .

 

Thanks for reading the post and visiting the website.

Some More Questions to Read:

IIT JEE Advanced 2025, Paper-1, Marks (+4, 0); Limits Question on Leibniz Rule

IIT JEE Advanced 2025 Paper-2 Limits Question based on L’Hospital’s Rule

Some Important Concept to Read:

L’ Hospital Rule complete Content 

 

Leave a Comment

error: Content is protected !!