IIT JEE Advanced 2025 Limits using Leibniz Rule

Question:

Let \alpha and \beta be the real numbers such that ,

 {\lim\limits_{x\to 0}{\frac{1}{x^3}(\frac{\alpha}{2}\int_{0}^{x}\frac{1}{1-t^2}dt+\beta x \cos x)}=2}

then the value of \alpha + \beta is__________.

Answer: 2.40

It is a moderate level question asked in IIT JEE Advanced 2025, Paper-1 of marks (+4, 0) Based on Leibniz Integral Formula and L’Hopital’s Rule

 

Solution:

First we write the question correctly as below

 {\lim\limits_{x\to 0} {\frac {{\frac{\alpha}{2}\int_{0}^{x}\frac{1}{1-t^2}dt+\beta x \cos x}}{x^3}=2}}

Since the limit is in \frac {0}{0} form therefore, Applying L’Hopital’s Rule, we get

 {\lim\limits_{x\to 0} {\frac {{\frac{\alpha}{2} (\frac{1}{1-x^2})+\beta \cos x-\beta x \sin x}}{3 x^2}=2}}

Now, put x=0 in the limit, if it is in the indeterminate form then only the limit will continue further, so make it in Indeterminate form.

Now on putting x=0 we get,

\frac{\alpha}{2}+\beta =0 therefore \alpha=-2\beta

…………….(1)

Now on putting value of   \alpha we get,

 {\lim\limits_{x\to 0} {\frac {\beta {(x^2-1)^{-1}}+\beta \cos x-\beta x \sin x}{3 x^2}=2}}

The limit is again in \frac {0}{0} form therefore, again Applying L’Hopital’s Rule, we get

 {\lim\limits_{x\to 0} {\frac {\beta {(-2x (x^2-1)^{-2}}- \sin x- \sin x-x \cos x)}{6 x}=2}}

Read more

IIT JEE Advanced 2025 Limit Question

Question

Let x_0  be the real number such that e^{x_0}+x_0=0 . For a given real number \alpha , define

g(x)=\frac{3xe^x+3x-\alpha e^x-\alpha x}{3(e^x +1)}

for all real numbers x .

Then which one of the following statements is TRUE?

(A) For \alpha = 2 , \lim\limits_{x \to x_0}=\left| \Large \frac{g(x)+e^{x_0}}{x-x_0} \right|=0

(B) For \alpha = 2 , \lim\limits_{x \to x_0}=\left| \Large \frac{g(x)+e^{x_0}}{x-x_0} \right|=1

(C) For \alpha = 3 , \lim\limits_{x \to x_0}=\left| \Large \frac{g(x)+e^{x_0}}{x-x_0} \right|=0

(D) For \alpha = 3 , \lim\limits_{x \to x_0}=\left| \Large \frac{g(x)+e^{x_0}}{x-x_0} \right|=\frac{2}{3}

IIT JEE Advanced 2025, Paper-2, (+3, –1); Limits Question

Read more

error: Content is protected !!