IIT JEE Advanced 2025 Limit Question

IIT JEE Advanced 2025, Paper-2, (+3, –1); Limits Question

Question

Let x_0  be the real number such that e^{x_0}+x_0=0 . For a given real number \alpha , define

g(x)=\frac{3xe^x+3x-\alpha e^x-\alpha x}{3(e^x +1)}

for all real numbers x .

Then which one of the following statements is TRUE?

(A) For \alpha = 2 , \lim\limits_{x \to x_0}=\left| \Large \frac{g(x)+e^{x_0}}{x-x_0} \right|=0

(B) For \alpha = 2 , \lim\limits_{x \to x_0}=\left| \Large \frac{g(x)+e^{x_0}}{x-x_0} \right|=1

(C) For \alpha = 3 , \lim\limits_{x \to x_0}=\left| \Large \frac{g(x)+e^{x_0}}{x-x_0} \right|=0

(D) For \alpha = 3 , \lim\limits_{x \to x_0}=\left| \Large \frac{g(x)+e^{x_0}}{x-x_0} \right|=\frac{2}{3}

Answer: C

Solution:

\lim\limits_{x \to x_0}=\left| \Large \frac{g(x)+e^{x_0}}{x-x_0} \right|=0

First put value of g(x)  in the given limit, in the option

\lim\limits_{x \to x_0}\left|\Large \frac{\frac{3xe^x+3x-\alpha e^x-\alpha x}{3(e^x +1)}+e^{x_0}}{{{x-x_0}}} \right|=0

\because e^{x_0}+x_0=0 , so putting its value in the above equation, we get

\lim\limits_{x \to x_0}\left|\Large \frac{\frac{3xe^x+3x-\alpha e^x-\alpha x}{3(e^x +1)}-{x_0}}{{{x-x_0}}} \right|

now taking LCM, we get

\lim\limits_{x \to x_0}\left|\Large \frac{{3xe^x+3x-\alpha e^x-\alpha x}-{3{x_0}e^x}-3{x_0}}{{{3(e^x+1)}({x-x_0})}} \right|

 

Now, replacing {3(e^{x}+1)} with {3(e^{x_0}+1)} as it is not taking part in making indeterminate form, so we get

\lim\limits_{x \to x_0}\left|\Large \frac{{3xe^x+3x-\alpha e^x-\alpha x}-{3{x_0}e^x}-3{x_0}}{{{3(e^{x_0}+1)}({x-x_0})}} \right|

Because it is in \frac {0}{0} form, therefore applying L’ Hospital Rule, we get

\lim\limits_{x \to x_0}\left|\Large \frac{{3e^x+3xe^x+3-\alpha e^x-\alpha}-{3{x_0}e^x}-0}{{{3(e^{x_0}+1)}(1)}} \right|

now, putting x=x_0 in the above limit, we get the desired value of the limit

= \left|\Large \frac{{3e^{x_0}+3x_0 e^{x_0}+3-\alpha e^{x_0}-\alpha}-{3{x_0}e^x}-0}{{{3(e^{x_0}+1)}}} \right|  

 

=\left|\Large \frac{{e^{x_0}(3-\alpha )}+(3-\alpha))}{{{3(e^{x_0}+1)}}} \right|

 

= \left|\Large \frac{{(e^{x_0}+1)(3-\alpha )}}{{{3(e^{x_0}+1)}}} \right|

 

= \left|\Large \frac{{(3-\alpha )}}{{{3}}} \right|

 

\therefore If \alpha = 2 then limit =\frac{1}{3}

Similarly, If \alpha = 3 then limit =0

Hence, option (C) is the correct option. 

This is the final answer given by IIT JEE Advanced.

 

 

Thanks for reading the post and visiting the website.

Some More Questions to Read:

IIT JEE Advanced 2025, Paper-1, Marks (+4, 0); Limits Question on Leibniz Rule

IIT JEE Advanced 2025 Paper-2 Limits Question based on L’Hospital’s Rule

JEE Mains 2025 Question on Limits Held on January 29, 2025; Shift-1

JEE Mains 2019; A.M, G.M Inequality based question.

Some Important Concept to Read:

L’ Hospital Rule complete Content 

Leave a Comment

error: Content is protected !!