IIT JEE Advanced 2025, Paper-2, (+3, –1); Limits Question
Question
Let x_0 be the real number such that e^{x_0}+x_0=0 . For a given real number \alpha , define
g(x)=\frac{3xe^x+3x-\alpha e^x-\alpha x}{3(e^x +1)}
for all real numbers x .
Then which one of the following statements is TRUE?
(A) For \alpha = 2 , \lim\limits_{x \to x_0}=\left| \Large \frac{g(x)+e^{x_0}}{x-x_0} \right|=0
(B) For \alpha = 2 , \lim\limits_{x \to x_0}=\left| \Large \frac{g(x)+e^{x_0}}{x-x_0} \right|=1
(C) For \alpha = 3 , \lim\limits_{x \to x_0}=\left| \Large \frac{g(x)+e^{x_0}}{x-x_0} \right|=0
(D) For \alpha = 3 , \lim\limits_{x \to x_0}=\left| \Large \frac{g(x)+e^{x_0}}{x-x_0} \right|=\frac{2}{3}
Answer: C
Solution:
\lim\limits_{x \to x_0}=\left| \Large \frac{g(x)+e^{x_0}}{x-x_0} \right|=0
First put value of g(x) in the given limit, in the option
\lim\limits_{x \to x_0}\left|\Large \frac{\frac{3xe^x+3x-\alpha e^x-\alpha x}{3(e^x +1)}+e^{x_0}}{{{x-x_0}}} \right|=0
\because e^{x_0}+x_0=0 , so putting its value in the above equation, we get
\lim\limits_{x \to x_0}\left|\Large \frac{\frac{3xe^x+3x-\alpha e^x-\alpha x}{3(e^x +1)}-{x_0}}{{{x-x_0}}} \right|
now taking LCM, we get
\lim\limits_{x \to x_0}\left|\Large \frac{{3xe^x+3x-\alpha e^x-\alpha x}-{3{x_0}e^x}-3{x_0}}{{{3(e^x+1)}({x-x_0})}} \right|
Now, replacing {3(e^{x}+1)} with {3(e^{x_0}+1)} as it is not taking part in making indeterminate form, so we get
\lim\limits_{x \to x_0}\left|\Large \frac{{3xe^x+3x-\alpha e^x-\alpha x}-{3{x_0}e^x}-3{x_0}}{{{3(e^{x_0}+1)}({x-x_0})}} \right|
Because it is in \frac {0}{0} form, therefore applying L’ Hospital Rule, we get
\lim\limits_{x \to x_0}\left|\Large \frac{{3e^x+3xe^x+3-\alpha e^x-\alpha}-{3{x_0}e^x}-0}{{{3(e^{x_0}+1)}(1)}} \right|
now, putting x=x_0 in the above limit, we get the desired value of the limit
= \left|\Large \frac{{3e^{x_0}+3x_0 e^{x_0}+3-\alpha e^{x_0}-\alpha}-{3{x_0}e^x}-0}{{{3(e^{x_0}+1)}}} \right|
=\left|\Large \frac{{e^{x_0}(3-\alpha )}+(3-\alpha))}{{{3(e^{x_0}+1)}}} \right|
= \left|\Large \frac{{(e^{x_0}+1)(3-\alpha )}}{{{3(e^{x_0}+1)}}} \right|
= \left|\Large \frac{{(3-\alpha )}}{{{3}}} \right|
\therefore If \alpha = 2 then limit =\frac{1}{3}
Similarly, If \alpha = 3 then limit =0
Hence, option (C) is the correct option.
This is the final answer given by IIT JEE Advanced.
Thanks for reading the post and visiting the website.
Some More Questions to Read:
• IIT JEE Advanced 2025, Paper-1, Marks (+4, 0); Limits Question on Leibniz Rule
• IIT JEE Advanced 2025 Paper-2 Limits Question based on L’Hospital’s Rule
• JEE Mains 2025 Question on Limits Held on January 29, 2025; Shift-1
• JEE Mains 2019; A.M, G.M Inequality based question.
Some Important Concept to Read: