IIT JEE Advanced 2025, Paper-2, (+3, –1); Limits Question
Question
Let x_0 be the real number such that e^{x_0}+x_0=0 . For a given real number \alpha , define
g(x)=\frac{3xe^x+3x-\alpha e^x-\alpha x}{3(e^x +1)}
for all real numbers x .
Then which one of the following statements is TRUE?
(A) For \alpha = 2 , \lim\limits_{x \to x_0}=\left| \Large \frac{g(x)+e^{x_0}}{x-x_0} \right|=0
(B) For \alpha = 2 , \lim\limits_{x \to x_0}=\left| \Large \frac{g(x)+e^{x_0}}{x-x_0} \right|=1
(C) For \alpha = 3 , \lim\limits_{x \to x_0}=\left| \Large \frac{g(x)+e^{x_0}}{x-x_0} \right|=0
(D) For \alpha = 3 , \lim\limits_{x \to x_0}=\left| \Large \frac{g(x)+e^{x_0}}{x-x_0} \right|=\frac{2}{3}